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Abstract
The escalating complexity of applications and services encourages
a shift towards higher-level data processing pipelines that inte-
grate both Cloud-native and HPC steps into the same workflow.
Cloud providers and HPC centers typically provide both execution
platforms on separate resources. In this paper we explore a more
practical design that enables running unmodified Cloud-native
workloads directly on the main HPC cluster, avoiding resource par-
titioning and retaining the HPC center’s existing job management
and accounting policies.

1 Introduction
Cloud-HPC convergence for Big Data processing pipelines that
combine Cloud-native with HPC steps is most often realized with
interfacing mechanisms for submitting HPC jobs from the Cloud
side or vice versa. However, bridging separate Cloud and HPC envi-
ronments has proven to be challenging, as it involves synchronizing
data between sites and coping with authorization restrictions. Hav-
ing two separate setups also elevates the associated hardware and
maintenance costs.

In this paper, we explore an HPC-centric solution that accom-
modates both Cloud and HPC software stacks on the same physical
resources. We focus our work on Kubernetes, currently the most
prominent distributed container orchestrator for supporting the
“Cloud-native” ecosystem. We present High-Performance Kuber-
netes (HPK), an open-source integration of unmodified Kubernetes
components and custom modules that runs as a user-level service,
requiring minimal support from the underlying HPC system soft-
ware [3, 9]. With HPK, users run their own private “mini Clouds” as
in-cluster applications that delegate scheduling decisions to Slurm
and execution to the Singularity/Apptainer container runtime, to
comply with organization policies and established resource ac-
counting mechanisms. We evaluate HPK by running unmodified
Cloud-native data analysis and machine learning applications in
an HPC cluster, showcasing how it enables users to tap on the vast
collection of available data processing frameworks, both as stand-
alone solutions and in hybrid computation scenarios alongside HPC
codes.
∗Also with University of Crete, Computer Science Department.

2 Related work
We classify work related to Cloud-HPC convergence in two main
categories: Systems that maintain the separation of Cloud and HPC,
and systems that embed one resource management framework
into the other. In the former case there are two separate resource
managers, while in the latter there is a single authority that controls
hardware allocations, shared by both Cloud and HPC deployments;
the embedded framework delegates resourcemanagement decisions
to the overall cluster manager. Works that assume separate clusters
can further be divided into bridging solutions that operate within
the context of the Cloud or HPC runtime, allowing the transparent
submission of remote jobs, or third-party systems that operate in
their own context and are able to administer tasks in both remote
Cloud and HPC installations.

Many bridging solutions are available for Kubernetes, enabling
Cloud users to integrate the execution of remote HPC tasks into
their workflows. The hpc-connector [11] uses a custom container
that when executed as part of a Kubernetes Job, will forward work
to the HPC cluster, track its execution, and collect any results.
Other tools use Kubernetes Custom Resource Definitions (CRDs)
that determine how to describe jobs targeted for the HPC clus-
ter. Torque-Operator [16] interfaces a Kubernetes installation to
a Torque-based HPC cluster, while the Bridge Operator [12] of-
fers a wider compatibility of remote job execution facilities. To
avoid CRDs, KNoC (Kubernetes Node on HPC Cluster) [13] imple-
ments a virtual node for Kubernetes that transparently manages
the container lifecycle on a remote HPC cluster using Slurm and
Singularity. This technique effectively allows users to employ exist-
ing Cloud-native tools, such as Argo Workflows to express complex
data-processing pipelines for both Cloud and HPC without explicit
remote execution steps.

Bridging solutions are especially useful when Cloud and HPC re-
sources are colocated. HPC centers increasingly support on-demand
provisioning of Cloud resources—even as partitions of the main
HPC machine. However, when the two are remotely situated, bridg-
ing suffers from the overhead of maintaining data copies. The user
must prepare and send inputs to the remote HPC cluster before
issuing any tasks, and then place back outputs in the Kubernetes
context. Data synchronization in hybrid workflows is addressed by
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StreamFlow [10], a third-party system which extends the workflow
language with declarative descriptions of execution sites (either
Cloud or HPC) and their relationship to workflow nodes. The run-
time automatically infers data dependencies, so to copy required
data where needed before running each step.

Embedded convergence solutions avoid data copies and the re-
quirement to manage and maintain two separate setups, as both
Cloud and HPC share a common hardware platform. The MPI Op-
erator [5] defines the MPIJob Kubernetes CRD, which is realized
by running a group of ephemeral container instances that include
the MPI process. Virtual clusters [15] take this notion a step further,
as the execution containers embed a Slurm deployment for com-
patibility with existing scripts. Additionally, the Slurm controller is
extended with a custom protocol that requests resources from the
Kubernetes scheduler, effectively maintaining Kubernetes’s role of
managing the whole infrastructure. A custom Kubernetes scheduler
allows applying different container placement policies for “HPC”
and “data center” services (Kubernetes deployments that run in
other containers). SUNK [4] (SlUrm oN Kubernetes) is based on a
similar idea, although using a cluster-wide Slurm deployment that
is integrated into Kubernetes as a specialized scheduler. External
Slurm “login nodes” provide users with the typical interface of
running Slurm scripts, while actual jobs are submitted to the Kuber-
netes cluster nodes. A “syncer” plugin monitors resource utilization
to synchronize state information between Kubernetes and Slurm.

Embedded configurations have also been classified as [14]: Over,
where Slurm is in control of the cluster, creating Kubernetes envi-
ronments ephemerally within batch jobs, adjacent, when both Slurm
and Kubernetes are installed on the same physical nodes but share
a common scheduler (i.e., Kubernetes uses Slurm to place jobs), and
under, when Slurm-enabled pods are deployed in Kubernetes (like
virtual clusters). HPK falls within the over class, however it does
not create a full Kubernetes environment as a batch job (or as a
dynamic partition, as may be possible using Flux child instances
[8]), but rather transforms each Kubernetes deployment to an indi-
vidual Slurm script, allowing for better scheduling flexibility and
finer-grain resource sharing.

We are not aware of any other system that embeds Kubernetes
in HPC in such a way. Usernetes [6] is a step in this direction,
providing a Kubernetes distribution that can run without root privi-
leges. We did consider extending Usernetes to implement HPK, but
quickly realized that the necessity of interfacing with Slurm and
Singularity/Apptainer at multiple levels, would require reevaluat-
ing the internal structure of Kubernetes leading to reimplementing
several subsystems. Interestingly, Usernetes solves the problem
of managing the system’s routing tables by utilizing a user-level
networking stack, although this imposes several requirements to
the environment, including availability of specific kernel modules.

3 Design & implementation
We aim to establish a framework that enables HPC users to execute
Kubernetes workloads within a standard cluster environment. From
a design perspective, the requirements are:

• Compatibility—To support the majority of Kubernetes ap-
plications and services, all native language abstractions,
such as pods (one or more containers that are scheduled

and scaled as a group), deployments, services, jobs, and vol-
umes should be available and fully functional. Exceptions
can only include constructs that directly relate to physical
hardware resources (i.e., “NodePort” services that request
a specific port number for exposing services at Kubernetes
nodes). Microservices require that pods are individually
addressable, supporting inter-container networking and
internal service discovery.

• Compliance—All resource management decisions should be
delegated to the cluster manager operating the cluster (i.e.,
Slurm). Organization policies for resource allocation and
accounting should be fully respected. Running workloads
should be visible at the level of the cluster manager. Also,
minimal configuration changes should be required to be
done at the host level by HPC administrators. Reliance on
special libraries or binaries that execute with “elevated”
permissions should be avoided.

• Usability—Make it easy for users to deploy. All binaries
should be packaged up with their dependencies into a con-
tainer, with no host-specific requirements. All configuration
should reside in the user’s home directory.

Kubernetes is implemented as a set of communicating subsys-
tems that collectively provide the functionality of distributed con-
tainer orchestration. A typical deployment constitutes of the fol-
lowing (Figure 1):

• API server—The “heart” of Kubernetes. Themain interface to
the cluster and the synchronization point for all controllers.

• etcd—The key-value store holding all state. Always accessed
through the API server.

• Controller manager—Watches for configuration changes or
failures and performs all necessary actions to reach the de-
sired state set by the user. The controller manager includes
the controllers that implement the logic for the base Kuber-
netes abstractions. As all controllers, it communicates only
with the API server.

• Scheduler—A controller that decides which node will be
used to run new pods.

• CoreDNS—A controller and DNS server for implementing
naming and discovery for pods and internal cluster services.

• Kubelet—An agent running on each worker node, imple-
menting the pod lifecycle using a specific container runtime
(i.e., containerd).

• Network plugin—A service supporting the Container Net-
work Interface (CNI) specification that assigns addresses to
pods. The network plugin, which—depending on the Kuber-
netes version—is used by the kubelet or the container run-
time directly, implements the Kubernetes network model.
In addition to assigning unique, cluster-wide addresses, it
makes sure that pods can communicate with each other
across hosts. It may also realize traffic shaping policies or
other network-level features.

• Network proxy—Creates local network routes for virtual
IP addresses used by “ClusterIP” services. Runs on each
worker node, alongside the kubelet.
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Figure 1: Components involved in a typical Kubernetes deployment on bare-metal.

• Storage controller—A controller that provisions storage of
some type that can be attached to pods. Creates physical vol-
umes to match requested persistent volume claims. While
this controller is optional, we consider it a core component
for a functioning system.

From these components, the API server, etcd, controller man-
ager, and CoreDNS are self-contained services that can run as user
processes. They are used unmodified in HPK, so from a user’s per-
spective HPK provides the same frontend interface and API as any
other Kubernetes deployment. Existing configurations using ad-
vanced language features, like isolated deployments in different
namespaces and access control (RBAC) rules, can be directly applied
without changes.

To interface with the container runtime, HPK implements a
custom kubelet. hpk-kubelet layers above both Slurm and Singu-
larity/Apptainer for execution, translating the Kubernetes-level
container lifecycle to Slurm scripts containing Singularity/App-
tainer commands, while also synchronizing Kubernetes with the
respective Slurm-level job states (i.e., enqueued jobs are marked as
“pending” pods in Kubernetes, “running” when started, or “failed”
if they produce errors). With a single kubelet proxying requests to
Slurm, the whole HPK integration can be visualized as a translation
service: Workloads enter in YAML format through the Kubernetes
API endpoint and exit as Slurm scripts from hpk-kubelet (Figure
2). We use generic Slurm directives in scripts that are not tied to
a specific Slurm version. This design satisfies the compliance re-
quirement, as individual Kubernetes workloads transparently show
up in Slurm queues. Moreover, Kubernetes-level resource requests
(i.e., number of CPUs, amount of memory) are forwarded directly
to Slurm, as are some HPK-specific pod annotations that can be
used to further customize execution. hpk-kubelet is implemented
as a Virtual Kubelet Provider [7]. To respect pod network semantics

(containers within the same pod share the same external IP address
and can use localhost to communicate with each other internally), it
uses an embedded container topology: hpk-kubelet starts a “parent”
container, which in turn runs each container of the pod. The pod
IP address is assigned to the parent container; “child” containers
run within the same network context without extra IP addresses.

In an HPK deployment, the Kubernetes cluster consists of just
one worker node that represents the total amount of computing
resources available to the user. Since cluster-level scheduling is to
be performed by Slurm, HPK employs a custom, simplified pass-
through scheduler that makes no scheduling decisions, but always
selects hpk-kubelet to run workloads.

For pod and service networking, HPK avoids the network plugin
and network proxy subsystems, as they perform actions at the sys-
tem level as the root user. Pod addresses should actually be assigned
by the container runtime. Singularity/Apptainer supports CNI plu-
gins and can be easily set up to delegate network addressing to a
cluster-wide service, whichmust be set up by system administrators
at the node level (i.e., Flannel). This, in addition to allowing con-
tainers to run as fakeroot for supporting common Docker images
that use the root user, are the only changes HPK currently requires
from the HPC environment; both being configuration options of
the container runtime.

To avoid the network proxy, HPK completely disables “ClusterIP”
services, via a Kubernetes admission controller—a hook that moni-
tors API requests and may reject or mutate them before reaching
the API server. In Kubernetes, services can explicitly request to
not use a virtual service IP (also called “headless” services). In such
cases, service discovery continues to function, as CoreDNS maps
the service name to the actual pod IPs instead of the virtual service
address. Thus, microservice architectures are not affected by the
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Figure 2: HPK translates Kubernetes workloads to Slurm and
Singularity/Apptainer.

lack of service-specific IPs. If load-balancing between pods is nec-
essary, it can be implemented by using an additional service within
a deployment.

For storage, HPK supports “HostPath” volumes—Kubernetes
volumes that are bound to existing directories on the host. These
can then be used by existing storage controllers, such as OpenEBS,
to provide container storage from different local or cluster-wide
facilities through separate storage classes. As an example, users may
deploy one OpenEBS storage class over node-local NVMe devices
for temporary data, and another over their Lustre-backed home
directory. Higher-level storage services, such as object stores, can
then utilize these storage classes.

The overall architecture of HPK is shown in Figure 3. The control
plane container (in white background) includes all HPK components
except the hpk-kubelet. It packs official releases of the API server,
etcd, controller manager, and CoreDNS binaries (all correspond-
ing to a specific Kubernetes version), along HPK’s pass-through
scheduler and service admission controller. At runtime, it generates
all necessary internal keys and certificates, bootstraps the Kuber-
netes control plane by initializing the executables in order, and
produces the configuration file containing the endpoint and cre-
dentials needed to connect to the API server. Then, the hpk-kubelet
uses this configuration to connect and announce its availability
as a node. HPK components run via Slurm with minimal resource
requirements on any cluster node. Currently, the control plane
container runs a single instance of each bundled service (i.e., API
controller, etcd) and can be configured to resume its state in case
it fails or expires due to exceeding the time limit imposed by the
HPC site. We plan to address scalability and high-availability of the
controle plane in future versions.

4 Evaluation
To evaluate HPK’s ability to efficiently deploy unaltered Cloud-
native workloads on HPC, we use AWS’s ParallelCluster, which
provides a Cloud-based HPC-as-a-service environment managed by
Slurm. We leverage the OnNodeConfigured action of ParallelClus-
ter’s configuration to execute a custom script upon node initializa-
tion in order to install additional software required by HPK. This
includes Apptainer with the Flannel CNI plugin and Flannel, a tool
to distribute private IPs to container instances and manage routes
across nodes. Apptainer is set up to use Flannel for networking
when running fakeroot containers (containers that internally use
the root user), which is the default HPK configuration to allow
seamless execution of Docker images.

For each experiment, we connect as a non-root user to the clus-
ter’s login node and run both HPK’s control plane container, as well
as hpk-kubelet. By setting the KUBECONFIG environment variable
to the configuration file produced, we can interface with HPK using
common tools, such as kubectl and helm.

4.1 Spark TPC-DS
TPC-DS is an industry standard benchmark for measuring the per-
formance of data processing systems. We run a sample integration
provided by Amazon for EKS [2], which uses Spark SQL orches-
trated via the Spark Operator. Our goal is to evaluate how HPK
handles Spark-based workloads as they would typically be deployed
in the Cloud. The operator streamlines the deployment and man-
agement of Apache Spark applications on Kubernetes by defining
the SparkApplication CRD. It handles the entire lifecycle of exe-
cution, including submission, scaling, and cleanup, and provides
logging and monitoring mechanisms for enhanced visibility into
performance.

First, we deploy the Spark Operator and MinIO via Helm. MinIO
is an S3-compatible storage system, used to store the generated
data. The benchmark requires a data generation phase before the
actual submission of the workload. The benchmark YAMLs require
that the S3 service is named spark-k8s-data, so this needs to be
adjusted when deploying MinIO.

Once the supporting tools are ready, we submit the data genera-
tion and the benchmark SparkApplications in series, optionally
adjusting the number executors and their resource requirements as
shown in Listing 1 (the example YAMLs use 3 executors, each occu-
pying 1 CPU core). The same SparkApplication YAMLs, without
any changes, run in both a regular Cloud setting and HPK.

4.2 Argo Workflows
Argo Workflows, a Cloud-native workflow environment, provides a
language (via a CRD) and runtime tomodel and execute applications
as directed acyclic graphs (DAGs). In Argo, every node of the graph
is a container. The Argo controller processes each workflow by sub-
mitting respective containers for execution, monitoring their status,
and collecting their outputs; all presented via a user-friendly, inter-
active, web-based frontend. The frontend also allows organizing
workflows using templates, as well as planning repeated execution
with a crontab-like syntax. HPK successfully runs the workflow
examples that are included in the Argo repository, supporting all
language features.
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Figure 3: HPK architecture.

1 apiVersion: "sparkoperator.k8s.io/v1beta2"

2 kind: SparkApplication

3 metadata:

4 name: tpcds -benchmark -data -generation -1g

5 spec:

6 ...

7 executor:

8 instances: 3

9 cores: 1

10 memory: "8000m"

11 memoryOverhead: 2g

Listing 1: Controlling the number of executors to be deployed
during the Spark TPC-DS data generation step.

Additionally, similar to KNoC, HPK will pass-through specific
pod annotations unmodified as additional Slurm flags. This also
allows running a single container as a job in Kubernetes and scal-
ing it up in the HPC environment via MPI parameters. The usage
pattern is unusual for Cloud users, but may prove helpful in HPC
for hybrid workflows, as it allows embedding MPI codes as steps
and individually defining their scale. A simple example of an Argo
workflow with an HPC step running the Embarrassingly Paral-
lel NAS benchmark is shown in Listing 2. We use the language’s

withItems construct to spawn 4 parallel steps, each running an-
other instance of the executable with different parameters. An HPK
Slurm annotation on the step template controls the number of tasks
used for each instance. This showcases a method to run a parallel
parameter sweep as part of a larger workflow. The “items” used
may be explicitly set or be dynamically generated as the output of
a previous step.

4.3 Distributed ML Training
Argo Workflows is also extensively used for orchestrating multi-
stage ML training pipelines (stand-alone or as part of the Kubeflow
toolkit). We evaluate a workflow that trains several different models
to classify images from the Fashion MNIST dataset, before selecting
the one with the best accuracy to support an inference service [1].
The workflow leverages the Training Operator from Kubeflow to
coordinate the execution of distributed training with TensorFlow.
Instead of simple container image steps, it uses TFJob CRDs; the
operator then spawns the requested number of pods with the ap-
propriate roles (i.e., parameter servers, workers) and handles their
lifecycle.
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1 kind: Workflow

2 metadata:

3 ...

4 spec:

5 entrypoint: npb -with -mpi

6 templates:

7 - name: npb -with -mpi

8 dag:

9 tasks:

10 - name: A

11 template: npb

12 arguments:

13 parameters:

14 - {name: cpus , value: "{{ item }}"}

15 withItems:

16 - 2

17 - 4

18 - 8

19 - 16

20 - name: npb

21 metadata:

22 annotations:

23 slurm -job.hpk.io/flags: >-

24 "--ntasks ={{ inputs.parameters.cpus }}"

25 slurm -job.hpk.io/mpi -flags: "..."

26 inputs:

27 parameters:

28 - name: cpus

29 container:

30 image: mpi -npb:latest

31 command: ["ep.A.{{ inputs.parameters.cpus }}"]

Listing 2: A simple Argo workflow executing multiple MPI
steps in parallel, eachwith a different number of Slurm tasks.

In addition to Argo Workflows, we install the Training Operator
from the Kubeflow project. We then run a simplified version of the
workflow that includes only the first two steps: the initial data in-
gestion and the distributed training of the models. The preparatory
phase also ensures that datasets are suitably formatted and environ-
ments are configured for the impending training. For training, the
workflow utilizes the MultiWorkerMirroredStrategy with Keras,
which implements synchronous distributed training across multiple
workers. Both steps run without issues in HPK, verifying its compat-
ibility with higher-level Cloud-native tools. The level of automation
and abstraction provided by the combination of Argo Workflows
with the Training Operator becomes particularly valuable when
constructing complex computational pipelines with multiple paral-
lel steps, also involving decision making in the process.

5 Conclusion
Kubernetes has become the industry standard runtime in the Cloud,
providing the necessary abstractions to embrace the breadth and
heterogeneity of available resources. Compatible Cloud-native tools
are constantly evolving, covering a wide spectrum of applications,
including database and queuing systems, interactive code execution
frontends, workflow management utilities, as well as development
frameworks that automatically optimize and scale operations. The
ability to deploy this software directly on an HPC cluster via HPK
opens up new possibilities for both Cloud and HPC users. HPK can
be used to attract Cloud users to large HPC installations, offering
them a familiar interface to seamlessly exploit the raw computing
power available.

HPK runs as a user-triggered service, instantiated via Slurm.
Container workloads are handled by the hpk-kubelet executable—a
virtual Kubernetes node representing the entire cluster as a single
entity. The hpk-kubelet translates container lifecycle actions to
Slurm scripts using Singularity/Apptainer commands. HPK also
includes several other customized Kubernetes modules to facilitate
integration with the HPC environment and simplify adoption by
HPC centers.
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