
Tools for RISC-V SoC Bring-up

Call: Open source for cloud-based
services, GA Nr: 101092993 (HaDEA)

Nick Kossifidis (FORTH)

2RISER Workshop - 27/11/2024

• Design of individual CPU units
• ALU, FPU, VPU, MMU, …

• Verification of individual units
• e.g. directed/random tests, in a simulator

• Verification of the whole core
• e.g. RISC-V ACT suite, checks against the SAIL

model/reference simulator
• Post-synthesis co-simulation tests
• Integration with other IPs

• Each IP with its own set of pre/post-synthesis tests
• …

SoC: Design, Integration, Verification

3

RISC-V SoC bring-up

• More advanced bare-metal tests for verification of the core
• e.g. parts of the RISC-V spec not covered by ACT, custom

extensions
• Progressively more complex bare-metal platform-level tests

• e.g. interrupt delivery/delegation, communication between
peripherals, peripheral operation

• Memory subsystem tests
• e.g. litmus, cache-coherency with peripherals, IOMMU

• Security-related tests
• e.g. constant-time requirements, TRNG operation, MTT, xPMP

• Stress testing/profiling/benchmarking
• …

RISER Workshop - 27/11/2024

4

Step-by-step expansion of coverage

• Even after the whole process, things can still go wrong !
• Booting a full-blown Linux distro greatly expands test coverage …

and complexity
• Tracking down HW bugs in such a setup is a nightmare!
• We need a strategy to progressively expand test coverage
• Also a strategy that may be used in constrained environments, e.g.

in case parts of the SoC / PCB end up not working after
tape-out/assembly (e.g. no DRAM)

RISER Workshop - 27/11/2024

5

BareMetal “framework”

• Custom C environment, some libc functions, no OS
• Very small tools mainly focused on {stress-}testing
• Also used for writing simple drivers to test peripherals

• No device tree parsing, simple headers instead
• Custom linker script to support running from ROM

• Our BootROM is also built using this process
• Generates binaries also for QEMU so that we can directly compare

results between the QEMU and HW
• Can also be done for other emulators
• We can even run the same binaries with HW by writing a QEMU

model for our HW
• As simple as possible, makes it easy to port simple C tools
• Also use it for educational purposes

RISER Workshop - 27/11/2024

6

Some examples…

RISER Workshop - 27/11/2024

7

The way to full Linux boot

RISER Workshop - 27/11/2024

8

Simplifying the Linux boot process

• Use OpenSBI, a firmware implementation that also acts as FSBL
• Get rid of SSBL and jump to Linux kernel directly
• Reduce number of external images

• Kernel image as an OpenSBI payload
• Root FS included as initramfs in the kernel image

RISER Workshop - 27/11/2024

9

Simplifying the Linux boot process

RISER Workshop - 27/11/2024

10

Simplifying the Linux kernel

• Start with a bare minimum kernel configuration
• No networking, no storage, NOMMU
• Limited functionality

• Move on to a more complex kernel configuration
• With networking, storage, multiple users, …

• Finally, a full-blown kernel configuration
• With systemd support and everything needed to boot a

fully-featured Linux distro.
• We automate the build process using yarvt targets:

• https://gitlab.riser.cloudsigma.com/riser/riser-os

RISER Workshop - 27/11/2024

11

Simplifying userspace

• Start with a tiny rootfs with only busybox
• statically linked

• Add more tools and networking support
• e.g. iperf, ssh

• Use an off-the-shelf rootFS of a full-blown Linux distro
• Start with Alpine, also built around busybox (and it

uses musl like we do for our small rootfs)
• Move to ubuntu

• Yarvt can build / initialize rootFSes automatically

RISER Workshop - 27/11/2024

12

Why NOMMU Linux

• MMU is a common source of HW bugs in our experience
• Microarchitectural bugs that are hard to reproduce in simple

tests we previously did
• Especially when we go multicore

• Why not go for a simple RTOS (e.g. FreeRTOS, Zephyr)
• Using standard tools (e.g. busybox, iperf) would be harder

(different syscall API)
• Building the image would be more complicated (need to go

through an SDK etc)
• Usually support only M-mode/U-mode setups
• Would be harder to compare behavior between MMU/NOMMU

RISER Workshop - 27/11/2024

13

NOMMU Linux basics
• Different memory allocators: mm/nommu.c
• Limitations on mmap: Documentation/nommu-mmap.txt

• No memory protection
• No fork() support

• fork() relies on COW, but vfork() is supported
• No overcommit / lazy binding
• No swap
• No dynamic heap/stack

• avoid using alloca(), brk(), sbrk(), use malloc()/free() instead
• No MAP_SHARED on files

• in general MAP_SHARED functionality is limited
• No MAP_FIXED
• Limitations on MAP_PRIVATE

• no COW/paging
• Excessive fragmentation, avoid large mappings

RISER Workshop - 27/11/2024

14

NOMMU Linux basics
• When MMU is available, BINFMT_ELF loader is used to load executables /

shared libraries.
• Without MMU, alternative loaders/binary formats are used

• BINMFT_FLAT
• Stripped down ELF (through elf2flt)
• No dynamic loading (libld)
• No shared libraries
• Limitations on executable’s size

• BINFMT_ELF_FDPIC
• Position Independent (PIC/PIE) ELF, no ET_EXEC support
• Support for shared libraries through function descriptors (hence FD)
• Support for dynamic loading (libld)
• May also be used when MMU is enabled

• Alternative toolchains also required
• based on μClibc or musl

RISER Workshop - 27/11/2024

15

NOMMU Linux basics

RISER Workshop - 27/11/2024

16

NOMMU Linux on RISC-V (kernel)

• Initial support added on Linux 5.5
• Only M-mode/U-mode scenario
• Mainly to support the Kendryte K210 that had a non-compliant MMU

• Almost declared deprecated on Feb. 2024
• But after community feedback, it was not deprecated
• Instead, new patches came up and support keeps getting better
• Support for running NOMMU Linux on S-mode
• Still needs further work though

RISER Workshop - 27/11/2024

17

NOMMU Linux on RISC-V (userspace)

• FLAT binaries supported, but won’t work for us
• Due to our custom memory layout

• ELF psABI for FDPIC support is still WiP
• But we can at least run busybox
• … and support for 64bit is also there

• μClibc added support for RISC-V
• Recently FORTH contributed μClibc-ng support to the official

RISC-V toolchain repo:
https://github.com/riscv-collab/riscv-gnu-toolchain/pull/1475

• And also fixed the CI to provide pre-built toolchains:
https://github.com/riscv-collab/riscv-gnu-toolchain/pull/1608

RISER Workshop - 27/11/2024

https://github.com/riscv-collab/riscv-gnu-toolchain/pull/1475
https://github.com/riscv-collab/riscv-gnu-toolchain/pull/1608

18

Testing MMU vs NOMMU

RISER Workshop - 27/11/2024

19

Next steps…

Add more tests to our collection…

Open source our BareMetal stuff (most of it)

Contribute our NOMMU fixes on upstream Linux

Keep up with upstream projects and adapt (even more
tests)

Add new profiles to yarvt for UEFI / ACPI support

Any suggestions ?

RISER Workshop - 27/11/2024

Thank you for your attention. Questions and comments ?

https://riser-project.eu

