

MODULAR MODEL-BASED DESIGN AND **TESTING FOR APPLICATIONS IN SATELLITES**

METASAT Perspective on Cloud for **Space and Related Developments** in the **METASAT Project**

Dr. Leonidas Kosmidis

Outline

- Introduction
- Historic view of Space Computing
- New Space
- The METASAT project
- Conclusion

Introduction

- Modern and upcoming space systems require increasing levels of computing power
- Traditional space processors cannot provide this performance level
- Emerging market trends and requirements similar to cloud computing
 - But with some significant differences

Historic view of Space Computing

- Traditionally the space sector has been accessible only by a few government-funded agencies
- Very high cost of missions
 - Launch cost
 - Hardware cost
 - Software cost
 - Long Term missions (10-20 years)
- Single entity ownership and use

European Space Agency

Im Confidential

Why Space Hardware is Expensive?

- Space is a harsh environment for electronic systems
- Radiation effects
 - Single Event Upsets (SEU)
 - Single Event Latch-ups (SEL)
 - Single Event Functional Interrupts (SEFI)
 - Total Ionising Dose (TID)
- Extreme temperatures (65°C to +125°C)
- No possibility of active cooling
- Limited available power
 - Solar panels
- Shock/vibration
- Long term availability: 10-20 years

Why Space Hardware is Expensive?

- Custom designs for space
 - Radiation hardened
 - Node Level: Radiation hardened cells, older/larger manufacturing technologies
 - Circuit/Architecture Level: Triplication, Error Correction Codes, Parity
 - Less die area from contemporary consumer electronics
 - Simpler Processors: in-order processing, shallow memory hierarchies, low number of cores
 - Radiation Tolerant
 - Consumer electronics chips screened for space use
 - Undergo extreme tests
 - Need full traceability
 - Simpler Processors: the more complex, the more difficult to test and higher probability of failure
 - When high performance is needed custom FPGA designs are used
 - Usually unique per mission
 - Custom interfaces: SpaceWire, SpaceFiber etc
- Very low volume

6

Why Space Software is Expensive?

- METASAT
- Needs to be qualified according to stringent safety standards e.g. ECSS
- Different categories depending on the software criticality
- MC/DC Coverage
- V-development model
 - Requirements
 - Verification
 - Traceability
- Linux cannot be qualified for institutional missions

Recent Changes in the Space Sector

- Increased involvement of private companies in space
- Lower launch cost
 - Reusable rockets
 - Smaller satellites
 - Nanosats, cubesats, satellite constellations
- Lower hardware cost
 - Use of Commercial-off the Shelf (COTS) processors
 - Use of automotive-grade processors
- Lower software cost
 - Use of COTS software
- Smaller missions
 - Low Earth Orbit
 - Short duration

New Space

- Affordable access to space
- Software-defined Satellites
- Satellite-as-a-service
 - Single owner, multiple users
 - Satellite software is no longer known at launch time
 - The architecture needs to be generic and powerful enough
 - Multiple modes of operation
 - Periodic Time sharing
 - Slot Reservation
 - Parallel execution provided different instruments are used by each user

- Unibap's SpaceCloud® Framework [1]
- Container-based solution
 - Linux, Docker
- Instrument Access API
- Access to GPU, AI accelerators
 - TensorFlow, OpenVINO etc
- Redundant boot mechanism
- Reliability monitoring system
- Radiation tolerant middleware
- Future Integration with AWS

- Radiation Tolerant High Performance Hardware
- Unibap iX5-100
 - AMD V1605B Embedded Ryzen
 - 4 dual threaded x86 Zen CPUs, AMD Vega GPU with 8 CUs

[1] O. Flordal et al, SpaceCloud Cloud Computing and In-Orbit Demonstration, European Workshop on

• 12-25W TDP

11

In-orbit demonstrator in 2021

- Example applications
 - Near-real time mid-air aircraft detection
 - Image and video compression
 - Car tracking
 - Volcanic activity
 - Forest Fires
 - Precision Agriculture
 - Oil Spill Detection

[1] O. Flordal et al, SpaceCloud Cloud Computing and In-Orbit Demonstration, European Workshop on
On-Board Data Processing (OBDP), 2021, <u>https://doi.org/10.5281/zenodo.5522872</u> © 2023 Consortium Confidential

- Similar in-orbit demonstrators from other companies: (non-exhaustive list)
 - FPGA SoCs with ARM CPUs
 - Xilinx Ultrascale+
 - Intel/Altera Cyclone V
 - NVIDIA based GPU platforms
 - NVIDIA TX2, NVIDIA Xavier
 - Al/Vision Accelerators
 - Intel/Movidius Myriad
- Similar software stack based on Linux and Docker

Limitations of existing space cloud solutions

- Use in institutional and mixed criticality missions
 - Dependence on non-qualifiable software stacks
 - Linux, docker, GPU drivers
 - No support for legacy space applications running on space qualified real-time operating systems
 - Security issues
 - Docker provides limited isolation
 - Hardware cannot be qualified for critical missions
 - Radiation tolerance is not enough for complex hardware
 - Enough information about the design internals is required
 - Potential design changes to enhance radiation tolerance and other features
 - Custom designs for space with existing commercial GPU IPs are not viable [1]
 - Short-term product availability for hardware and software
- ITAR and export control restrictions [1]

[1] L. Kosmidis et al, GPU4S: Major Project Outcomes, Lessons Learnt and Way Forward, DATE 2021

Open Hardware to the rescue

- RISC-V has revolutionalised the computer architecture landscape across all domains, from supercomputers to space
- Royalty-free ISA, modular and customizable
- Several open source and closed source implementations
- Unique opportunity for safety critical markets like space to get access to full implementation details and/or customise designs to their needs
- A large ecosystem is under development

RISC-V°

The METASAT Horizon Europe Project

- 2-year project: January 2023-December 2024
- TRL 3-4

METASAT Overview

- Manage the complexity of future hardware and software for space
- A prototype High Performance Platform is required
 - Multicore CPUs, AI accelerators, GPU
- Support for Virtualisation
 - Time and Space isolation provide benefits for faster and easier integration
 - Components can be developed and tested in isolation
 - Fault Detection, Isolation and Recovery (FDIR)
 - Qualified Hypervisor for space systems
 - Xtratum
 - Can provide the features required for the implementation of a high criticality space cloud for institutional missions

- Mixed Criticality Platform
- FPGA Prototype on a Xilinx VCU118
- Multicore CPU Based on NOEL-V + SPARROW AI SIMD Accelerator
 - Qualifiable software stack for high criticality software with moderate AI acceleration needs

METASAT

- SPARROW AI SIMD Accelerator
- High-performance, Low-cost at least 30% smaller than conventional vector processors with similar performance
- Minimal core modifications

19

- incremental qualification
- Key features: reuse of integer register file, short SIMD unit (8-bit), swizzling, reductions
- Intrinsics-like software support similar to ARM's NEON

[1] M. Solé, SPARROW: A Low-Cost Hardware/Software Co-designed SIMD Microarchitecture for AI Operations in Space Processors, DATE 2021

- Mixed Criticality Platform
- FPGA Prototype on a Xilinx VCU 118
- Configurable Vortex RISC-V GPU [1]
 - Enhancements for real-time execution and reliability
 - Qualifiable software stack for tasks requiring very high performance
 - Enable the use of GPUs from bare metal, or RTOS
 - Share the GPU among partitions
- The hardware platform will be open sourced as well as much of its software

[1] B. Tine et al, Vortex: Extending the RISC-V ISA for GPGPU and 3D-Graphics, MICRO 2021

- Mixed Criticality Platform
- FPGA Prototype on a Xilinx VCU 118
- Ethernet connectivity through Gaisler's GRLIB Ethernet controller (greth)
- Currently the driver is getting ported from Linux to Xtratum

greth0	Cobham Gaisler GR Ethernet MAC
	AHB Master 4
	APB: fc084000 - fc084100
	IRQ: 5
	edcl ip 192.168.125.2, buffer 16 kbyte

uthenticity of host '192.168.125.1 (192.168.125.1)' can't be established. key fingerprint is SHA256:W6uPqsqLxV6etVMjbRiW7rcC/9QVKjl5BjlNcrfVBak. This kev is not known by any other names Are you sure you want to continue connecting (yes/no/[fingerprint])? yes Warning: Permanently added '192.168.125.1' (ED25519) to the list of known hosts. nsole@192.168.125.1's password: Welcome to Ubuntu 18.04.6 LTS (GNU/Linux 4.15.0-208-generic x86_64) Documentation: https://help.ubuntu.com Management: https://landscape.canonical.com Support: https://ubuntu.com/advantage updates can be applied immediately. see these additional updates run: apt list --upgradable Jbuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by pplicable law. New release '20.04.6 LTS' available. Run 'do-release-upgrade' to upgrade to it. *** /dev/mapper/vg_docker-lv_docker will be checked for errors at next reboot *** *** /dev/sdc1 will be checked for errors at next reboot *** *** /dev/sda2 should be checked for errors *** *** System restart required *** Last login: Tue May 2 11:56:43 2023 from 84.88.51.129 sole@Caos17:~\$ ls GitHub.token OBPMark sole@Caos17:~\$

© 2023 Consortium Confidential

Project Use Cases

- 3 Project Use cases will be implemented
- OHB/DLR Use Case
 - Hardware interlocking
 - Protect against wrong software behaviour
 - Implement interlocks at software level instead of hardware
 - Reduce cost
 - Implement AI Based FDIR
 - To be accelerated on the CPU using the SPARROW AI accelerator
 - Housekeeping data from the ENMAP Satellite

Project Use Cases

- 2 BSC-provided use cases based on OBPMark-ML [1][2]
- Cloud screening

4 Channels RGB/NIR mapped to binary mask (cloud/no cloud)

 $\begin{array}{c} 0 \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 500 \\ 600 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 500 \\ 600 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 500 \\ 600 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 500 \\ 600 \\ 700 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 500 \\ 600 \\ 700 \\ 700 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 200 \\ 400 \\ 600 \\ 700$

- Ship Detection
- To be executed on the GPU
- [1] D. Steenari et al, OBPMark (On-Board Processing Benchmarks) Open Source Computational Performance Benchmarks for Space Applications, European Workshop on On-Board Data Processing (OBDP2021). <u>https://doi.org/10.5281/zenodo.5638577</u>
- [2] http://obpmark.org

23

Conclusion

- Cloud space computing is becoming a reality
- Many similarities and some differences with classic cloud computing
 - Software stack
 - Smaller target systems i.e. high performance embedded systems
 - Low power consumption and thermal limits
 - Increased reliability and radiation tolerance
 - Interface with instruments
- New Space approaches are based on Linux and Docker
- Institutional and high criticality missions require qualifiable stacks and high degree of isolation
- The METASAT project with its RISC-V based hardware and software implementations provides some underlying features which contribute to the implementation of a cloud system complying with these requirements

https://metasat-project.eu/ info@metasat-project.eu

https://twitter.com/MetasatProject

https://www.linkedin.com/company/metasat-project

METASAT has received funding from the European Union's Horizon Europe programme under grant agreement number 101082622.

© 2023 Consortium Confidential